rust_algorithm_club/collections/deque/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
use core::ops::{Index, IndexMut};
use core::{fmt, mem, ptr, slice};
use std::alloc::{alloc, dealloc, handle_alloc_error, realloc, Layout};

/// A double-ended queue (abbreviated to _deque_), for which elements can be
/// added or remove from both back and front ends.
///
/// Underneath the hood, this [`Deque`] uses a contiguous memory block as a ring
/// buffer to store values.
///
/// References:
///
/// - [Rust Standard Library: std::collections::VecDeque][1]
/// - [Wikipedia: Circular buffer][2]
///
/// [1]: `std::collections::VecDeque`
/// [2]: https://en.wikipedia.org/wiki/Circular_buffer
// ANCHOR: layout
pub struct Deque<T> {
    tail: usize,
    head: usize,
    ring_buf: RawVec<T>,
}
// ANCHOR_END: layout

/// For demo purpose, set default capacity to 1 in order to trigger
/// buffer expansions easily. This value must be power of 2.
const DEFAULT_CAPACITY: usize = 1;

impl<T> Deque<T> {
    /// Constructs a new, empty [`Deque<T>`].
    ///
    /// For convenience, the deque initially allocates a region of a single `T`.
    // ANCHOR: new
    pub fn new() -> Self {
        Self {
            tail: 0,
            head: 0,
            ring_buf: RawVec::with_capacity(DEFAULT_CAPACITY),
        }
    }
    // ANCHOR_END: new

    /// Prepends the given element value to the beginning of the container.
    ///
    /// # Parameters
    ///
    /// * `elem` - The element to prepend.
    ///
    /// # Complexity
    ///
    /// Constant.
    // ANCHOR: push_front
    pub fn push_front(&mut self, elem: T) {
        self.try_grow(); // 1
        self.tail = self.wrapping_sub(self.tail, 1); // 2

        // This is safe because the offset is wrapped inside valid memory region.
        unsafe { self.ptr().add(self.tail).write(elem) } // 3
    }
    // ANCHOR_END: push_front

    /// Appends the given element value to the end of the container.
    ///
    /// # Parameters
    ///
    /// * `elem` - The element to append.
    ///
    /// # Complexity
    ///
    /// Constant.
    // ANCHOR: push_back
    pub fn push_back(&mut self, elem: T) {
        self.try_grow(); // 1
        let head = self.head;
        self.head = self.wrapping_add(self.head, 1); // 2

        // This is safe because the offset is wrapped inside valid memory region.
        unsafe { self.ptr().add(head).write(elem) } // 3
    }
    // ANCHOR_END: push_back

    /// Removes and returns the first element of the container.
    /// If there are no elements in the container, return `None`.
    ///
    /// # Complexity
    ///
    /// Constant.
    // ANCHOR: pop_front
    pub fn pop_front(&mut self) -> Option<T> {
        if self.is_empty() {
            return None; // 1
        }

        let tail = self.tail;
        self.tail = self.wrapping_add(self.tail, 1); // 2

        // This is safe because the offset is wrapped inside valid memory region.
        unsafe { Some(self.ptr().add(tail).read()) } // 3
    }
    // ANCHOR_END: pop_front

    /// Removes and returns the last element of the container.
    /// If there are no elements in the container, return `None`.
    ///
    /// # Complexity
    ///
    /// Constant.
    // ANCHOR: pop_back
    pub fn pop_back(&mut self) -> Option<T> {
        if self.is_empty() {
            return None; // 1
        }

        self.head = self.wrapping_sub(self.head, 1); // 2

        // This is safe because the offset is wrapped inside valid memory region.
        unsafe { Some(self.ptr().add(self.head).read()) } // 3
    }
    // ANCHOR_END: pop_back

    /// Peeks the first element of the container.
    /// If there are no elements in the container, return `None`.
    ///
    /// # Complexity
    ///
    /// Constant.
    // ANCHOR: front
    pub fn front(&self) -> Option<&T> {
        if self.is_empty() {
            return None;
        }
        // This is safe because the offset is wrapped inside valid memory region.
        unsafe { Some(&*self.ptr().add(self.tail)) }
    }
    // ANCHOR_END: front

    /// Peeks the last element of the container.
    /// If there are no elements in the container, return `None`.
    ///
    /// # Complexity
    ///
    /// Constant.
    // ANCHOR: back
    pub fn back(&self) -> Option<&T> {
        if self.is_empty() {
            return None;
        }
        let head = self.wrapping_sub(self.head, 1);
        // This is safe because the offset is wrapped inside valid memory region.
        unsafe { Some(&*self.ptr().add(head)) }
    }
    // ANCHOR_END: back

    ///	Checks whether the container is empty.
    ///
    /// # Complexity
    ///
    /// Constant.
    // ANCHOR: is_empty
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }
    // ANCHOR_END: is_empty

    ///	Gets the number of elements in the container.
    ///
    /// # Complexity
    ///
    /// Constant.
    // ANCHOR: len
    pub fn len(&self) -> usize {
        self.head.wrapping_sub(self.tail) & (self.cap() - 1)
    }
    // ANCHOR_END: len

    /// Creates an iterator that yields immutable reference of each element.
    // ANCHOR: iter
    pub fn iter(&self) -> Iter<T> {
        Iter {
            head: self.head,
            tail: self.tail,
            // This is safe because only initialized contents would be accessed.
            ring_buf: unsafe { self.ring_buf.as_slice() },
        }
    }
    // ANCHOR_END: iter

    /// Creates an iterator that yields mutable reference of each element.
    // ANCHOR: iter_mut
    pub fn iter_mut(&mut self) -> IterMut<T> {
        IterMut {
            head: self.head,
            tail: self.tail,
            // This is safe because only initialized contents would be accessed.
            ring_buf: unsafe { self.ring_buf.as_mut_slice() },
        }
    }
    // ANCHOR_END: iter_mut

    /// Checks if underlying ring buffer is full.
    // ANCHOR: is_full
    fn is_full(&self) -> bool {
        self.cap() - self.len() == 1
    }
    // ANCHOR_END: is_full

    /// Resizes the underlying ring buffer if necessary.
    ///
    /// This method simply makes the ring buffer contiguous for the beneath
    /// scenario (tail > head). For a thorough Implementation, please refer to
    /// [`VecDeque::handle_capacity_increase`][1].
    ///
    /// ```console,ignore
    /// Before:
    ///          h   t
    /// [o o o o x x o o]
    ///
    /// Resize:
    ///          h   t
    /// [o o o o x x o o | x x x x x x x x]
    ///
    /// Copy:
    ///              t           h
    /// [x x x x x x o o | o o o o x x x x]
    ///  _ _ _ _           _ _ _ _
    /// ```
    ///
    /// # Complexity
    ///
    /// Linear in the size of the container.
    ///
    /// [1]: https://github.com/rust-lang/rust/blob/07194ff/library/alloc/src/collections/vec_deque/mod.rs#L405-L447
    // ANCHOR: try_grow
    fn try_grow(&mut self) {
        if self.is_full() {
            let old_cap = self.cap(); // 1
            self.ring_buf.try_grow(); // 2

            // 3
            if self.tail > self.head {
                // The content of ring buffer won't overlapped, so it's safe to
                // call `copy_nonoverlapping`. It's also safe to advance the
                // pointer by `old_cap` since the buffer has been doubled.
                unsafe {
                    let src = self.ptr(); // 4-1
                    let dst = self.ptr().add(old_cap); // 4-2
                    ptr::copy_nonoverlapping(src, dst, self.head);
                }
                self.head += old_cap; // 5
            }
        }
    }
    // ANCHOR_END: try_grow

    /// Returns the actual index of the underlying ring buffer for a given
    /// logical index + addend.
    // ANCHOR: wrapping_add
    fn wrapping_add(&self, index: usize, addend: usize) -> usize {
        wrap_index(index.wrapping_add(addend), self.cap())
    }
    // ANCHOR_END: wrapping_add

    /// Returns the actual index of the underlying ring buffer for a given
    /// logical index - subtrahend.
    // ANCHOR: wrapping_sub
    fn wrapping_sub(&self, index: usize, subtrahend: usize) -> usize {
        wrap_index(index.wrapping_sub(subtrahend), self.cap())
    }
    // ANCHOR_END: wrapping_sub

    /// An abstraction for accessing the pointer of the ring buffer.
    // ANCHOR: ptr
    fn ptr(&self) -> *mut T {
        self.ring_buf.ptr
    }
    // ANCHOR_END: ptr

    /// An abstraction for accessing the capacity of the ring buffer.
    // ANCHOR: cap
    fn cap(&self) -> usize {
        self.ring_buf.cap()
    }
    // ANCHOR_END: cap
}

// ANCHOR: Drop
impl<T> Drop for Deque<T> {
    fn drop(&mut self) {
        while let Some(_) = self.pop_back() {}
    }
}
// ANCHOR_END: Drop

/// Returns the actual index of the underlying ring buffer for a given logical index.
///
/// To ensure all bits of `size - 1` is set to 1, here the size must always be
/// power of two.
// ANCHOR: wrap_index
fn wrap_index(index: usize, size: usize) -> usize {
    debug_assert!(size.is_power_of_two());
    index & (size - 1)
}
// ANCHOR_END: wrap_index

/// An immutable iterator over the elements of a [`Deque`].
///
/// This struct is created by the `iter` method on [`Deque`].
// ANCHOR: Iter_layout
pub struct Iter<'a, T> {
    head: usize,
    tail: usize,
    ring_buf: &'a [T],
}
// ANCHOR_END: Iter_layout

// ANCHOR: Iter
impl<'a, T> Iterator for Iter<'a, T> {
    type Item = &'a T;

    fn next(&mut self) -> Option<Self::Item> {
        if self.tail == self.head {
            return None; // 1
        }
        let tail = self.tail; // 2
        self.tail = wrap_index(self.tail.wrapping_add(1), self.ring_buf.len()); // 3
        self.ring_buf.get(tail) // 4
    }
}
// ANCHOR_END: Iter

/// A mutable iterator over the elements of a [`Deque`].
///
/// This struct is created by the `iter_mut` method on [`Deque`].
// ANCHOR: IterMut_layout
pub struct IterMut<'a, T> {
    head: usize,
    tail: usize,
    ring_buf: &'a mut [T],
}
// ANCHOR_END: IterMut_layout

// ANCHOR: IterMut
impl<'a, T> Iterator for IterMut<'a, T> {
    type Item = &'a mut T;

    fn next(&mut self) -> Option<Self::Item> {
        if self.tail == self.head {
            return None;
        }
        let tail = self.tail;
        self.tail = wrap_index(self.tail.wrapping_add(1), self.ring_buf.len());
        // This unsafe block is needed for solving the limitation of Iterator
        // trait: the `&mut self` is bound to an anonymous lifetime which rustc
        // cannot figure out whether it would outlive returning element. Hence
        // the explicit pointer casting is required.
        unsafe {
            let ptr = self.ring_buf as *mut [T]; // 1
            let slice = &mut *ptr; // 2
            slice.get_mut(tail) // 3
        }
    }
}
// ANCHOR_END: IterMut

/// An owning iterator over the elements of a [`Deque`].
///
/// This struct is created by the `into_iter` method on [`Deque`].
// ANCHOR: IntoIter_layout
pub struct IntoIter<T>(Deque<T>);
// ANCHOR_END: IntoIter_layout

// ANCHOR: IntoIter
impl<T> Iterator for IntoIter<T> {
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.pop_front()
    }
}
// ANCHOR_END: IntoIter

// ANCHOR: IntoIterator
impl<T> IntoIterator for Deque<T> {
    type Item = T;
    type IntoIter = IntoIter<T>;

    fn into_iter(self) -> Self::IntoIter {
        IntoIter(self)
    }
}
// ANCHOR_END: IntoIterator

// ANCHOR: IntoIterator_ref
impl<'a, T> IntoIterator for &'a Deque<T> {
    type Item = &'a T;
    type IntoIter = Iter<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl<'a, T> IntoIterator for &'a mut Deque<T> {
    type Item = &'a mut T;
    type IntoIter = IterMut<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter_mut()
    }
}
// ANCHOR_END: IntoIterator_ref

// ANCHOR: Index
impl<T> Index<usize> for Deque<T> {
    type Output = T;

    fn index(&self, index: usize) -> &Self::Output {
        assert!(index < self.len(), "Out of bound");
        let index = self.wrapping_add(self.tail, index);
        // This is safe because the offset is wrapped inside valid memory region.
        unsafe { &*self.ptr().add(index) }
    }
}
// ANCHOR_END: Index

// ANCHOR: IndexMut
impl<T> IndexMut<usize> for Deque<T> {
    fn index_mut(&mut self, index: usize) -> &mut T {
        assert!(index < self.len(), "Out of bound");
        let index = self.wrapping_add(self.tail, index);
        // This is safe because the offset is wrapped inside valid memory region.
        unsafe { &mut *self.ptr().add(index) }
    }
}
// ANCHOR_END: IndexMut

// ANCHOR: Debug
impl<T: fmt::Debug> fmt::Debug for Deque<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_list().entries(self.iter()).finish()
    }
}
// ANCHOR_END: Debug

/// A growable, contiguous heap memory allocation that stores homogeneous elements.
///
/// This type can be seen as a simplified version of [`RawVec`] inside Rust
/// Standard Library. Use at your own risk.
///
/// [`RawVec`]: https://github.com/rust-lang/rust/blob/ff6ee2a7/library/alloc/src/raw_vec.rs
#[derive(Debug)]
// ANCHOR: RawVec
struct RawVec<T> {
    ptr: *mut T,
    cap: usize,
}
// ANCHOR_END: RawVec

impl<T> RawVec<T> {
    /// Allocates on the heap with a certain capacity.
    ///
    /// The `cap` argument would be ignored when allocating zero sized types
    /// and use zero instead. The caller would see a quite large capacity.
    /// See [`RawVec::cap`] for more.
    // ANCHOR: RawVec_with_capacity
    pub fn with_capacity(cap: usize) -> Self {
        let layout = Layout::array::<T>(cap).unwrap(); // 1

        // 2
        if layout.size() == 0 {
            // This is safe for zero sized types. However, be careful when facing
            // zero capacity layouts. It must be replaced with an actual pointer
            // before operations such as dereference or read/write.
            let ptr = ptr::NonNull::dangling().as_ptr(); // 3
            Self { ptr, cap: 0 }
        } else {
            // This is safe because it conforms to the [safety contracts][1].
            //
            // [1]: https://doc.rust-lang.org/1.49.0/alloc/alloc/trait.GlobalAlloc.html#safety-1
            let ptr = unsafe { alloc(layout) }; // 4
            if ptr.is_null() {
                handle_alloc_error(layout);
            }
            Self {
                ptr: ptr.cast(),
                cap,
            }
        }
    }
    // ANCHOR_END: RawVec_with_capacity

    /// Doubles the size of the memory region.
    ///
    /// This method maybe only reallocates non-zero sized types. Non-zero sized
    /// types would not grow since they are not actually allocated.
    // ANCHOR: RawVec_try_grow
    pub fn try_grow(&mut self) {
        if mem::size_of::<T>() == 0 {
            return; // 1
        }

        if self.cap == 0 {
            *self = Self::with_capacity(1); // 2
            return;
        }

        let old_layout = Layout::array::<T>(self.cap).unwrap(); // 3
        let new_cap = self.cap << 1;
        let new_size = old_layout.size() * new_cap;
        // This is safe because it conforms to the [safety contracts][1].
        //
        // [1]: https://doc.rust-lang.org/1.49.0/alloc/alloc/trait.GlobalAlloc.html#safety-4
        let ptr = unsafe { realloc(self.ptr.cast(), old_layout, new_size) };
        if ptr.is_null() {
            handle_alloc_error(old_layout);
        }
        // ...Old allocation is unusable and may be released from here at anytime.

        self.ptr = ptr.cast(); // 4
        self.cap = new_cap;
    }
    // ANCHOR_END: RawVec_try_grow

    /// Gets the capacity of the allocation.
    ///
    /// If `T` is zero sized, this will always be the largest possible power of
    /// two of `usize`. Currently `(usize::MAX + 1) / 2`.
    ///
    /// Ref: [https://github.com/rust-lang/rust/blob/f7534b/library/alloc/src/collections/vec_deque/mod.rs#L61]
    // ANCHOR: RawVec_cap
    pub fn cap(&self) -> usize {
        if mem::size_of::<T>() == 0 {
            1usize << (mem::size_of::<usize>() * 8 - 1)
        } else {
            self.cap
        }
    }
    // ANCHOR_END: RawVec_cap

    /// Returns an immutable slice of underlying allocation.
    ///
    /// This is unsafe because the slice may not have all its contents initialized.
    // ANCHOR: RawVec_as_slice
    pub unsafe fn as_slice(&self) -> &[T] {
        slice::from_raw_parts(self.ptr.cast(), self.cap())
    }
    // ANCHOR_END: RawVec_as_slice

    /// Returns a mutable slice of underlying allocation.
    ///
    /// This is unsafe because the slice may not have all its contents initialized.
    // ANCHOR: RawVec_as_mut_slice
    pub unsafe fn as_mut_slice(&self) -> &mut [T] {
        slice::from_raw_parts_mut(self.ptr.cast(), self.cap())
    }
    // ANCHOR_END: RawVec_as_mut_slice
}

// ANCHOR: RawVec_drop
impl<T> Drop for RawVec<T> {
    /// Deallocates the underlying memory region by calculating the type layout
    /// and number of elements.
    ///
    /// This only drop the memory block allocated by `RawVec` itself but not
    /// dropping the contents. Callers need to drop the contents by themselves.
    fn drop(&mut self) {
        let layout = Layout::array::<T>(self.cap).unwrap(); // 1
        if layout.size() > 0 {
            // This is safe because it conforms to the [safety contracts][1].
            //
            // [1]: https://doc.rust-lang.org/1.49.0/alloc/alloc/trait.GlobalAlloc.html#safety-2
            unsafe { dealloc(self.ptr.cast(), layout) }
        }
    }
}
// ANCHOR_END: RawVec_drop

#[cfg(test)]
mod deque {
    use super::Deque;

    #[test]
    fn push_pop() {
        let mut d = Deque::new();
        assert_eq!(d.len(), 0);
        assert_eq!(d.front(), None);
        assert_eq!(d.back(), None);

        d.push_back(1);
        d.push_back(2);
        // [1, 2]
        assert_eq!(d.len(), 2);
        assert_eq!(d.front(), Some(&1));
        assert_eq!(d.back(), Some(&2));

        d.push_front(3);
        d.push_front(4);
        // [4, 3, 1, 2]
        assert_eq!(d.len(), 4);
        assert_eq!(d.front(), Some(&4));
        assert_eq!(d.back(), Some(&2));

        assert_eq!(d.pop_front(), Some(4));
        assert_eq!(d.pop_front(), Some(3));
        assert_eq!(d.pop_front(), Some(1));
        assert_eq!(d.pop_front(), Some(2));
        assert_eq!(d.pop_front(), None);
        assert_eq!(d.len(), 0);
        assert_eq!(d.front(), None);
        assert_eq!(d.back(), None);

        d.push_front(5);
        d.push_front(6);
        // [6, 5]
        assert_eq!(d.len(), 2);
        assert_eq!(d.front(), Some(&6));
        assert_eq!(d.back(), Some(&5));

        assert_eq!(d.pop_back(), Some(5));
        assert_eq!(d.pop_back(), Some(6));
        assert_eq!(d.pop_back(), None);
        assert_eq!(d.len(), 0);
        assert_eq!(d.front(), None);
        assert_eq!(d.back(), None);
    }

    #[test]
    fn iter() {
        let mut d = Deque::new();
        d.push_back(1);
        d.push_back(2);
        d.push_front(3);
        d.push_front(4);
        d.push_front(5);
        d.push_front(6);
        // [6, 5, 4, 3, 1, 2]

        let mut iter = d.iter();
        assert_eq!(iter.next(), Some(&6));
        assert_eq!(iter.next(), Some(&5));
        assert_eq!(iter.next(), Some(&4));
        assert_eq!(iter.next(), Some(&3));
        assert_eq!(iter.next(), Some(&1));
        assert_eq!(iter.next(), Some(&2));
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn iter_mut() {
        let mut d = Deque::new();
        d.push_back(1);
        d.push_back(2);
        d.push_front(3);
        d.push_front(4);
        // [4, 3, 1, 2]

        for elem in d.iter_mut() {
            *elem *= *elem;
        }

        let mut iter = d.iter_mut();
        assert_eq!(iter.next(), Some(&mut 16));
        assert_eq!(iter.next(), Some(&mut 9));
        assert_eq!(iter.next(), Some(&mut 1));
        assert_eq!(iter.next(), Some(&mut 4));
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn into_iter() {
        let mut d = Deque::new();
        d.push_back(1);
        d.push_back(2);
        d.push_front(3);
        d.push_front(4);
        // [4, 3, 1, 2]

        let l = d.into_iter().collect::<Vec<_>>();
        assert_eq!(&[4, 3, 1, 2], &l[..]);

        let mut d = Deque::new();
        d.push_back(1);
        d.push_back(2);
        d.push_front(3);
        d.push_front(4);
        // [4, 3, 1, 2]
        let mut l = vec![];
        for elem in &d {
            l.push(elem);
        }
        assert_eq!(&[&4, &3, &1, &2], &l[..]);

        let mut d = Deque::new();
        d.push_back(1);
        d.push_back(2);
        d.push_front(3);
        d.push_front(4);
        // [4, 3, 1, 2]

        for elem in &mut d {
            *elem *= *elem;
        }

        let mut iter = d.iter_mut();
        assert_eq!(iter.next(), Some(&mut 16));
        assert_eq!(iter.next(), Some(&mut 9));
        assert_eq!(iter.next(), Some(&mut 1));
        assert_eq!(iter.next(), Some(&mut 4));
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn index() {
        let mut d = Deque::new();
        d.push_back(1);
        d.push_back(2);
        d.push_front(3);
        d.push_front(4);
        // [4, 3, 1, 2]

        for i in 0..d.len() {
            d[i] *= d[i];
        }
        assert_eq!(d[0], 16);
        assert_eq!(d[1], 9);
        assert_eq!(d[2], 1);
        assert_eq!(d[3], 4);
    }

    #[test]
    fn zero_sized() {
        let mut d = Deque::new();
        d.push_back(());
        d.push_front(());
        d.push_front(());
        d.push_back(());
        assert_eq!(d.len(), 4);
        assert_eq!(d.pop_back(), Some(()));
        assert_eq!(d.pop_back(), Some(()));
        assert_eq!(d.len(), 2);
        assert_eq!((d[0], d[1]), ((), ()));
        assert_eq!(d.front(), Some(&()));
        assert_eq!(d.back(), Some(&()));
        assert_eq!(d.into_iter().collect::<Vec<_>>(), vec![(), ()],);
    }

    #[test]
    fn complex_data() {
        let mut d = Deque::new();
        assert_eq!(d.len(), 0);
        d.push_front(vec![]);
        d.push_back(vec![Box::new(())]);
        d.push_back(vec![Box::new(()), Box::new(())]);
        d.push_front(vec![Box::new(()), Box::new(()), Box::new(())]);
        assert_eq!(d[0].len(), 3);
        assert_eq!(d[1].len(), 0);
        assert_eq!(d[2].len(), 1);
        assert_eq!(d[3].len(), 2);
    }

    #[test]
    fn drop() {
        static mut DROPS: u32 = 0;
        struct S;
        impl Drop for S {
            fn drop(&mut self) {
                unsafe {
                    DROPS += 1;
                }
            }
        }
        let mut d = Deque::new();
        d.push_back(S);
        d.push_back(S);
        d.push_back(S);
        d.push_front(S);
        d.push_front(S);
        core::mem::drop(d);
        unsafe {
            assert_eq!(DROPS, 5);
        }
    }
}