執行器與系統輸入輸出
在前面的章節 Future
Trait,我們探討了一個在 socket 上非同步讀取資料的範例:
# #![allow(unused_variables)] #fn main() { pub struct SocketRead<'a> { socket: &'a Socket, } impl SimpleFuture for SocketRead<'_> { type Output = Vec<u8>; fn poll(&mut self, wake: fn()) -> Poll<Self::Output> { if self.socket.has_data_to_read() { // The socket has data-- read it into a buffer and return it. Poll::Ready(self.socket.read_buf()) } else { // The socket does not yet have data. // // Arrange for `wake` to be called once data is available. // When data becomes available, `wake` will be called, and the // user of this `Future` will know to call `poll` again and // receive data. self.socket.set_readable_callback(wake); Poll::Pending } } } #}
這個 future 會從一個 socket 上讀取可用的資料,倘若無任何可用資料,它會將控制權轉至執行器,並要求 future 的任務應在 socket 有可讀資料時能被喚醒。然而,這個範例對 Socket
型別的實作並不夠清楚,具體來說,我們無法得知 set_readable_callback
函式如何運作。當 socket 有可讀資料時,我們要怎樣安排呼叫一次 lw.wake()
?有個作法是讓一個執行緒不斷檢查 socket 是否可讀,並適時呼叫 wake()
。不過,這方法需要分別對每個阻塞 IO 的 future 建立執行緒,效率低落,絕對會大幅降低咱們非同步程式碼的效率。
一般來說,這問題的解法通常透過整合系統原生的阻塞性 IO 元件(IO-aware system blocking primitive)來實踐,例如 Linux 上的 epoll
、FreeBSD 與 macOS 的 kqueue
、Windows 上的 IOCP,以及 Fuchsia 上的 port
(這些都在跨平台 Rust 模組 mio
中實作介面出來)。這些原生元件都允許一個執行緒被多個非同步 IO 事件阻塞,並在任一事件完成時返回。實際上,這些 API 長相如下:
# #![allow(unused_variables)] #fn main() { struct IoBlocker { ... } struct Event { // An ID uniquely identifying the event that occurred and was listened for. id: usize, // A set of signals to wait for, or which occurred. signals: Signals, } impl IoBlocker { /// Create a new collection of asynchronous IO events to block on. fn new() -> Self { ... } /// Express an interest in a particular IO event. fn add_io_event_interest( &self, /// The object on which the event will occur io_object: &IoObject, /// A set of signals that may appear on the `io_object` for /// which an event should be triggered, paired with /// an ID to give to events that result from this interest. event: Event, ) { ... } /// Block until one of the events occurs. fn block(&self) -> Event { ... } } let mut io_blocker = IoBlocker::new(); io_blocker.add_io_event_interest( &socket_1, Event { id: 1, signals: READABLE }, ); io_blocker.add_io_event_interest( &socket_2, Event { id: 2, signals: READABLE | WRITABLE }, ); let event = io_blocker.block(); // prints e.g. "Socket 1 is now READABLE" if socket one became readable. println!("Socket {:?} is now {:?}", event.id, event.signals); #}
Future 的執行器可以使用這些元件來提供非同步 IO 物件,例如 socket 可以配置特定 IO 事件發生時的回呼函式(callback)。在上面 SocketRead
範例的情況下,Socket::set_readable_callback
函式的虛擬碼可能如下:
# #![allow(unused_variables)] #fn main() { impl Socket { fn set_readable_callback(&self, waker: Waker) { // `local_executor` is a reference to the local executor. // this could be provided at creation of the socket, but in practice // many executor implementations pass it down through thread local // storage for convenience. let local_executor = self.local_executor; // Unique ID for this IO object. let id = self.id; // Store the local waker in the executor's map so that it can be called // once the IO event arrives. local_executor.event_map.insert(id, waker); local_executor.add_io_event_interest( &self.socket_file_descriptor, Event { id, signals: READABLE }, ); } } #}
現在,我們只需要有一個執行器執行緒來接收與發送任何 IO 事件到合適的 Waker
,這個 Waker
會喚醒對應的任務,讓執行器在回去檢查更多 IO 事件之前,能驅動更多任務(然後一直循環下去⋯)。